Kernel-type density estimation on the unit interval

نویسنده

  • M. C. JONES
چکیده

We consider kernel-type methods for estimation of a density on [0, 1] which eschew explicit boundary correction. Our starting point is the successful implementation of beta kernel density estimators of Chen (1999). We propose and investigate two alternatives. For the first, we reverse the roles of estimation point x and datapoint Xi in each summand of the estimator. For the second, we provide kernels that are symmetric in x and X; these kernels are conditional densities of bivariate copulas. We develop asymptotic theory for the new estimators and compare them with Chen’s in a substantial simulation study. We also develop automatic bandwidth selection in the form of ‘rule-of-thumb’ bandwidths for all three estimators. We find that our second proposal, that based on ‘copula kernels’, seems particularly competitive with the beta kernel method of Chen in integrated squared error performance terms. Advantages include its greater range of possible values at 0 and 1, the fact that it is a bona fide density, and that the individual kernels and resulting estimator are comprehensible in terms of a direct single picture (as is ordinary kernel density estimation on the line).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Berry-Esseen Type Bound for a Smoothed Version of Grenander Estimator

In various statistical model, such as density estimation and estimation of regression curves or hazard rates, monotonicity constraints can arise naturally. A frequently encountered problem in nonparametric statistics is to estimate a monotone density function f on a compact interval. A known estimator for density function of f under the restriction that f is decreasing, is Grenander estimator, ...

متن کامل

Comparison of the Gamma kernel and the orthogonal series methods of density estimation

The standard kernel density estimator suffers from a boundary bias issue for probability density function of distributions on the positive real line. The Gamma kernel estimators and orthogonal series estimators are two alternatives which are free of boundary bias. In this paper, a simulation study is conducted to compare small-sample performance of the Gamma kernel estimators and the orthog...

متن کامل

Nonparametric multiplicative bias correction for kernel-type density estimation on the unit interval

We consider kernel-type methods for estimation of a density on [0, 1] which eschew explicit boundary correction. Our starting point is the successful implementation of beta kernel density estimators of Chen (1999). We propose and investigate two alternatives. For the first, we reverse the roles of estimation point x and datapoint Xi in each summand of the estimator. For the second, we provide k...

متن کامل

Statistical Topology Using the Nonparametric Density Estimation and Bootstrap Algorithm

This paper presents approximate confidence intervals for each function of parameters in a Banach space based on a bootstrap algorithm. We apply kernel density approach to estimate the persistence landscape. In addition, we evaluate the quality distribution function estimator of random variables using integrated mean square error (IMSE). The results of simulation studies show a significant impro...

متن کامل

Bayes Interval Estimation on the Parameters of the Weibull Distribution for Complete and Censored Tests

A method for constructing confidence intervals on parameters of a continuous probability distribution is developed in this paper. The objective is to present a model for an uncertainty represented by parameters of a probability density function.  As an application, confidence intervals for the two parameters of the Weibull distribution along with their joint confidence interval are derived. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006